Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

Microscopic Microscope

The microscopes that look at tiny things, like living cells, tend to be bulky items themselves. Not so a device created by bioengineer Luke Lee at the University of California, Berkeley. In his microscope, a sample cell is dropped into a liquid-filled channel etched into a chip, where it gets tagged by a fluorescent dye and is illuminated by a tiny laser. This beam prompts the dye to glow at a specific wavelength, resulting in a sharp image of the cell. The laser’s lens is a droplet of liquid polymer one-20th the diameter of a hair; it is focused by application of an electric current that changes its curvature. The microscope uses cheap components and could be fabricated the same way that microchips are made, at a cost of about $1 each. Lee believes that this microscope, funded by the U.S. Defense Advanced Research Projects Agency, will in three to five years show up in a wristwatch-sized biowarfare monitoring computer. Pharmaceutical companies could use arrays of the microscopes to study the effects of experimental drugs.

0 comments about this story. Start the discussion »

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me