Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

As researchers engineer everything from computer chips to drug-discovery tools down to smaller and smaller scales, making these devices is becoming excruciatingly difficult. The principal micromanufacturing technique, photolithography, uses light to etch microscopic features onto a silicon surface; but it’s expensive and exacting. One promising alternative is called “soft lithography,” a technique that uses flexible rubber stamps to fabricate devices with micro- and nanoscale features.

Until now soft lithography has mainly been used to make tiny devices like microfluidic chambers used for biological research. But Harvard University chemists George Whitesides -soft lithography’s pioneer-and Heiko Jacobs have found a new application: transferring nanoscale patterns of electrical charge onto electrically conductive polymers. This advance could mean a cheaper and easier way to manufacture very small data storage and optical devices.

The Harvard scientists accomplished the trick by first building a mold made of silicon, using traditional photolithography methods to carve out the pattern. They then poured rubbery silicone into the mold to make the stamps, which they coated with a thin layer of gold. When the researchers pressed one of these stamps against a polymer film and ran a current through them, the pattern was transferred to the polymer as a series of positive and negative charges. A single mold can churn out multiple stamps, and each can be used repeatedly.

Although the new technique is now just a lab demonstration, potential new applications include encoding data on charge-based storage devices such as “smart cards”-credit-card-sized pieces of plastic used to verify the cardholder’s identity-or constructing waveguides for optical telecommunications switches. Says Christopher B. Murray, manager of nanoscale materials and devices at IBM’s T. J. Watson Research Center, “This is one more step in a number of beautiful efforts to explore nontraditional patterning technology.”

0 comments about this story. Start the discussion »

Tagged: Computing

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me
×

A Place of Inspiration

Understand the technologies that are changing business and driving the new global economy.

September 23-25, 2014
Register »