Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

Over the last 35 years, the transistors that make up computer chips have steadily shrunk, leading to smaller, faster and cheaper PCs. But while transistors perform the chip’s computations, they can’t do their work without other key electronic components-the resistors, capacitors and inductors that store and route power across circuit boards. Typically plunked down on the surface of a circuit board, these components have hardly shrunk over time, and they hog prime computing real estate-like a parking lot in downtown Manhattan. This places severe limits on how much smaller cell phones, personal digital assistants and computers can be made.

Several companies are now on the verge of breaking these limits by shrinking the components and integrating or embedding them into the circuit board to make computers even smaller. Others pack the miniaturized components together with microchips, then attach those combined units to the board. Manufacturers could soon shrink circuit boards to fit into smaller devices or fit more chips onto a circuit board. With close to 100 integrated components set to launch by year’s end, cell phones may be a step closer to playing MP3s, Web browsing and acting as organizers all at once.

Key to making this happen has been  the integration of power storage devices called capacitors. Fayetteville, AR-based Integral Wave Technologies has accomplished that with photolithography-the technique used to pattern the tiny silicon transistors on microchips. The company targets products to high-end computer chip makers and what firm president Michael Yates calls the “shrink-and-cram” market: wireless- and handheld-computer manufacturers. Other companies, like Intarsia in Fremont, CA, and Lucent Technologies spinoff SyChip, are also aiming products at the wireless market.

“Everyone knows we’re going to integration,” says University of Arkansas electronics researcher Richard Ulrich, who works for Integral Wave. “We’re just trying to figure out the materials and how.” Within three to six years, the technology could play a major role in creating multi-tasking cell phones and handheld computers with the same capabilities as today’s laptop. 

0 comments about this story. Start the discussion »

Tagged: Computing

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me