Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

More like a PC

The first cell phones relied on dozens of hardware components. In the past 15 years, programmable chips have been added, but their function is set immutably at manufacture. Today, dedicated, single-purpose chips do most of the work in mobile phone handsets and base stations; these chips are made as simple as possible to keep costs down.

Given the mishmash of conflicting standards and the uneven advent of the next generation of broadband wireless, manufacturers such as Motorola are starting to see dedicated components as a liability. A manufacturer that guesses wrong about the future standard will find itself with a lot of useless junk in its warehouses. As Ken Riordan, of Motorola’s Personal Communications Sector in Libertyville, IL, puts it, “If you commit your solution to hardware, and you get it wrong, then you’re going to be in a very jeopardized situation.”

So more-general-purpose software that can be reprogrammed looks appealing. No one understands the trade-offs better than Joseph Mitola III, a radio engineer whom many insiders perceive to be the central innovator in the field. Early in life, Mitola became fascinated with computer code; he learned Fortran while attending high school in Providence, RI, in the 1960s. When he got to college-Northeastern University in Boston-he says he was “one of the few who knew how to program anything.” Mitola had also tinkered with radios. Combining both interests led to a career creating top-secret radio designs for the military-including the first software-defined radios, which were for military use (see “The Military Seed” sidebar). Indeed, the commercial wireless industry learned of the technology in the early 1990s mainly through Mitola’s papers and lectures. His military bosses cleared these for public release, figuring the military could benefit if the commercial world pushed the technology further and brought costs down.

The problem Mitola was trying to solve was similar to the situation that would arise if you had to put a new circuit board in your PC every time you wanted to do a different task-say, switch from Web browsing to a spreadsheet. You’d eventually run out of space inside the box. The same holds true for cell phones. “If you want to cram in four more functions, it means each device has to be about a quarter the size it was before,” says Mitola, now at the McLean, VA, office of MITRE, a nonprofit R&D consultancy. But, he adds, chips aren’t shrinking rapidly enough to make that possible, given the many standards and functions the wireless revolution demands.

0 comments about this story. Start the discussion »

Tagged: Communications

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me