Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

The great wireless revolution, which took off with the spectacular spread of cell phones in the 1990s, and which is supposed to bring broadband Internet to the gadget in your pocket, is in trouble.

Demand is soaring, forcing makers of wireless equipment and network operators to invest billions to meet humanity’s inexhaustible thirst for getting connected anywhere, anytime. Global sales of mobile phones soared from seven million in 1990 to 700 million last year and are projected to reach 1.7 billion in 2005. More and more users expect their phones to deliver very clear voice signals and to pick up their e-mail, albeit slowly.

But as frustrated callers know, communicating with mobile phones is tricky. The problem: today’s wireless networks use a maze of incompatible transmission standards, so road warriors aren’t guaranteed a dial tone when they travel. U.S. wireless operators alone use three competing standards, and just one of these is compatible with the leading standard in Europe, which itself has several variants. Most Asian wireless networks are built to another standard. This radio-wave Babel prevents most mobile phones in the United States from being viable elsewhere. It also limits U.S. manufacturers’ economies of scale against foreign competitors.

The wireless revolution’s troubles go beyond conflicting standards. Consumers consistently expect more advanced features, so models that were state of the art in, say, 1995 will seem antique by 2003. By then, almost all new mobile phones will offer some form of Internet access. Millions of people in Japan, for example, snapped up i-mode, a service that lets them use cell phones to send text messages, buy stocks and check sports scores. Worldwide, companies are spending billions to build a new network, usually referred to as “third generation,” or 3G, that is expected to bring broadband-detailed Web pages, music, even video-to your mobile phone.

However exciting for consumers, these advances carry a price, since there’s currently no easy way to upgrade mobile phones, or the base stations that carry their signals to the network, without changing hardware. Moreover, the wireless industry can’t predict which offerings will be winners; the consequences of failing to guess right can be devastating. Last year, European wireless operators spent heavily to offer phones equipped with a format known as Wireless Access Protocol, only to find the buying public impatient with their slow download speed. Demand was limp.

Small wonder that wireless companies are looking for ways to make their networks flexible, so as to avoid costly retrofitting as demand changes. A technology first developed by the military and now being pursued by several technology leaders could be the key. The technique is known to experts as software-defined radio, or SDR. (“Radio” refers here not to AM or FM, but to any equipment that communicates through the airwaves on radio frequencies, as cell phones do.) The advantage offered by this new approach is that it shifts the workload of wireless units from dedicated components to software that can be reprogrammed to work on a different standard or add applications. That’s entirely different from today’s mobile phones and base stations, in which virtually all signal processing is carried out by electronic circuitry designed to do one and only one thing.

The migration toward wireless networks that are adaptable due to their use of reprogrammable software “is one of the most important trends in technology today,” says analyst Craig Mathias of MobileInsights in Mountain View, CA. James Gunn, of the Dallas-based consulting firm Forward Concepts, calls this trend the “revolutionary next step” that wireless technology needs.

Flexible software could also help solve another basic problem for the whole wireless enterprise: scarcity of spectrum (or bandwidth). As the demand for wireless communication explodes, there is an accompanying dearth of the necessary frequency channels. The Federal Communications Commission recently concluded that networks using reprogrammable software could ease that shortage because they could seek out and use temporarily unoccupied channels. Last December, the FCC proposed rules for its licensing of equipment and software in order to speed up U.S. adoption of the technology.

0 comments about this story. Start the discussion »

Tagged: Communications

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me