Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

Historians disagree about how to categorize the machine pictured above. Was it the first computer? A mammoth mechanical calculator? But there is no question that the differential analyzer-shown with its inventor, MIT’s Vannevar Bush-was a crucial player in the history of computing.

Bush designed the device to solve differential equations in an attempt to model the rapidly expanding power systems of the 1920s. When completed in 1931, the analyzer used electric motors to drive shafts and gears that represented each term in a complicated equation.

The differential analyzer showed the world that machines were suited not just for physical labor, but for mental labor as well. It alerted researchers and funders to the profound possibilities of computers. Bush became director of the Office of Scientific Research and Development-precursor to the National Science Foundation. But though his vision helped shape the government’s attitude toward science, Bush had a blind spot when it came to the digital revolution: He refused to fund early projects in digital computing, including the University of Pennsylvania’s landmark ENIAC. And though the differential analyzer was, in Bush’s words, “the first of the great family of modern analytical machines to appear-the computers, in ordinary parlance,” today’s PCs aren’t direct descendants of his contraption. Bush’s was an analog machine; it represented numbers with physical qualities that vary continuously-distance, rotation and so forth-rather than with the discrete 1s and 0s of digital devices.

Still, the differential analyzer was a critical, if inadvertent, midwife to the birth of digital technology. While laboring over the machine and observing the logic of its action, one of Bush’s students-a mathematician named Claude Shannon -began thinking of new ways to build circuits. Shannon realized that the “true” and “false” of Boolean algebra could be represented by the “on” and “off” positions of an electrical switch-in other words, he came up with the idea of a bit.

Shannon’s work with the differential analyzer led to a thesis published in 1938 that has been called “one of the most important master’s theses ever written.” In it, Shannon laid out the logic upon which all digital circuits are now based.

0 comments about this story. Start the discussion »

Tagged: Business

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me
×

A Place of Inspiration

Understand the technologies that are changing business and driving the new global economy.

September 23-25, 2014
Register »