Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

DNA and proteins are the stars of biotech, but they aren’t the only prime players in biology. Recent studies show that complex sugars called polysaccharides have a critical role in cell development and tumor formation. Like DNA, these sugars are composed of basic chemical building blocks whose sequence determines their biological functions. Until now, however, sugars have remained a bit player in the biotech revolution-partly because sequencing a single polysaccharide could take months.

A new technique developed by a pair of MIT researchers, Ram Sasisekharan and Ganesh Venkataraman, could change all that, allowing sugar sequences to be deciphered in days. By getting the job done much more efficiently and quickly, the MIT approach paves the way for researchers to clarify the exact roles complex sugars play throughout the body. The potential payoff: future drugs that target sugars linked to viral infections, cancerous tumors and other diseases. “The MIT group has taken this technique to a very high level of utility,” says Merton Bernfield, a professor of cell biology at Harvard University.

Lodged between cells, polysaccharides known as glycosaminoglycans (GAGs) regulate cell-to-cell communication. These sugars are highly specialized; the arrangement of their building blocks dictates the message neighboring cells receive, and ultimately serves to differentiate organs. GAG sequences in the liver, for instance, differ substantially from those in the kidney; those in healthy tissues differ from those that are diseased. Biomedical researchers would like to be able to divide the body into unique, sugar-based “zip codes,” says Venkataraman. “Once you know these zip codes, you can distinguish between normal and abnormal tissues.”

The MIT researchers now aim to design a machine to automate the procedure. “We’re at the tip of the iceberg in the polysaccharide field, where DNA and protein research was years ago,” says Sasisekharan.

0 comments about this story. Start the discussion »

Tagged: Business

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me