Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

Fire up most video games and you enter a parallel universe where the laws of physics do not apply. Trajectories, collisions, explosions all behave differently than they do here on Earth. While graphics resolution and sound quality have dramatically improved in recent years, the underlying physics have remained primitive.

That’s about to change. In their continuing quest for greater realism, game makers are upgrading and designing new 3-D simulation games by injecting a heavy dose of real-world physics. “Game developers always need to find new things to innovate and for many today that means better physics,” notes Chris Hecker, a technical developer at Definition Six, a Seattle-based game company who has organized talks on physics at developers’ conventions.

With more computer power and proper skills, developers are able to design games in which the underlying properties of many game objects-not just a few-conform to the laws of physics. Weapons, bridges and vehicles need no longer follow scripted patterns. Instead, objects can be programmed with an underlying set of rules that let them fall, stack, slide and sink in an intuitive manner, displaying the variety we experience in everyday life. For players of motor racing, flight simulations, and all manner of action and shoot-em-up games, this means far more lifelike and unpredictable explosions, collapses and collisions. Game worlds will now be enhanced with rippling waves, pouring rain, sinewy smoke and flickering fires.

Thanks to enhanced game physics, players will be able to smash through windows, pick up manhole covers and feel the heft and weight of different weapons. They will experience massive explosions where particles and shrapnel spin wildly out of control, exerting a force on everything in their course of flight. This will be a vast improvement, developers say, over today’s typical action game, in which an explosion may result in a static cartoon graphic that says “Kaboom.”

Some predict that creating these complex, algorithm-driven, 3-D simulations will require an overhaul in the way games are designed. Game companies may find they need to form teams of physics- and math-savvy programmers. Irving, Texasbased Motorsims, for example, has hired a PhD in vehicle collision and handling
dynamics along with a former principal engineer in aerospace guidance from Boeing to work on its new racing games.

0 comments about this story. Start the discussion »

Tagged: Computing

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me