Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

I had just finished giving a talk on the Information Revolution when a young man approached me and said: “What I really want is a brain implant so that I can move massive amounts of information rapidly and painlessly in and out of my head.” “You mean so that you can download and upload information without going through the slow eyeball, mouth and ear interfaces?” I countered. “Yes. Isn’t that a great idea?” he replied, much encouraged by my reaction. “No. It’s a lousy idea,” I said, “…unless you are talking about sensor or effector chips,” and went on to explain.

If you cannot hear because of inner-ear damage, but your auditory nerve is sound, then a cochlear implant may restore your hearing, as it has for thousands of people who underwent the two-hour procedure: A small receiver is placed within the bone behind the ear, with its two dozen electrodes surgically implanted into the cochlea, where they can electrically stimulate the auditory nerve. An external device, worn behind the ear, picks up sounds, converts them to electrical signals, and conveys them through a tiny transmitter to the implant and hence the cochlea. The auditory nerve then carries these stimuli to the brain where they are perceived as sounds. The same principle applies to people with a deficient retina and a healthy optic nerve. But because vision is more complex than hearing, the precursors to retinal implants are only now being tried on a few human beings. Sensory implants like these that help people recover a lost sense are a great idea.

Working in the other direction is also feasible: We can embed a chip in a muscle to detect the electrical signals our brain uses to flex that muscle. We can then transmit this information to a machine that will open a door or steer a wheel-chair, whenever we tighten that muscle. Some people have even been able to do simple on-off tasks like these by altering, somehow, their own brain waves, which are detected noninvasively. Such effector implants and approaches can help people gain or augment motor functions, and are also a great idea.

If sensor and effector implants are so great, why not extend them to the brain, as my young listener craves, and perform even more spectacular feats? Every night, while asleep, you could be downloading into your own human memory entire sections of the Encyclopedia Britannica. Or, you could connect your brain chip to mine, so that we could intercommunicate our thoughts, directly and rapidly.

1 comment. Share your thoughts »

Tagged: Biomedicine

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me