Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

Semiconductor makers have supplied ever-more-efficient chips. But performance limits may soon be reached, partly because of the difficulty of making transistors small enough. Conventional transistors switch on or off when a burst of current passes through. As the transistor gets smaller, so does the level of current required. For the smallest of the small, labs have made transistors that switch in response to a single electron-but such nanode-vices have required cryogenic cooling. Now Princeton electrical engineer Stephen Chou has created a single-electron memory that works at room temperature. Manufacture of such devices, however, is several years off, awaiting greater understanding of the chips’ unusual properties.

0 comments about this story. Start the discussion »

Tagged: Computing

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me