Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

On a balmy day the thermostat in Nancy Hopkins’ lab in the Center for Cancer Research on the MIT campus is set to a temperature that is uncomfortably warm-for humans, anyway. It’s fine for the other occupants: minnow-sized striped zebra fish that populate the plastic tanks stacked against one wall. Around here, what the fish need, the fish get. Hopkins is fervent about the fish because she believes that they will repay her with something of immeasurable value: a fundamental understanding of life and disease.

Hopkins is one of a growing number of researchers who have begun using the zebra fish as a tool for studying the developmental biology of vertebrates. It is, in some ways, a departure from her scientific roots. Hopkins grew up professionally along with the field of molecular biology, eventually learning the ways of viruses in an effort to uncover the genetic underpinnings of cancer. Now she has traded in viruses for fish-an exchange that reflects her enthusiasm for genetics and for being part of the early stages of a new discipline.

While most zebra-fish researchers are searching for a handful of genes important to particular organs or systems, Hopkins’ team plans to pinpoint 2,400 of them-enough to build an entire animal. The project is ambitious, but Hopkins is no stranger to daring science. Her first mentor was the audacious co-discoverer of the structure of DNA, James Watson. Since her days as an undergraduate in Watson’s classroom and as a researcher in his labs, Hopkins has kept what she calls “impeccable scientific company,” working side by side with some of biology’s most influential players. Hopkins reminisced about the early days of DNA with TR Associate Editor Rebecca Zacks, and looked ahead to an extraordinary fishing expedition.

You were involved with molecular biology at its very early stages-was that more accident or design?

More age, I think. I was old enough to be there at the right time. I came in in 1963, 10 years after the structure of DNA was determined, and the genetic code was still being cracked. People were still trying to figure out what DNA triplet coded for which amino acid, and Jim Watson would come rushing into class waving triplets. At that time, we couldn’t imagine the answers to questions like what type of gene would the first cancer gene or oncogene be. Now we know some dozens of genes that can be cancer genes, but the very first time you find one out, your whole brain somehow changes, your world changes, the way you view nature changes.

0 comments about this story. Start the discussion »

Tagged: Biomedicine

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me