Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

“Small is good” is a technology credo that is rapidly spreading throughout the world. Research on ways to exploit structures on a nanometer (billionth of a meter) scale is hot-and governments are pouring money into it. But, as with many fast-growing fields, nanotechnology is suffering from an acute identity crisis.

To better define the discipline and take its pulse around the world, a panel of nanotechnologists-funded by the National Science Foundation (NSF) and a handful of other federal agencies-has just completed a year-long tour of a who’s who of U.S. and international labs. The World Technology Evaluation Center (WTEC) at Loyola College expects to release a report of the findings early this summer. “It’s the first time that the whole field [of nanotechnology] has been laid out,” says Richard Siegel, the panel’s co-chair and a researcher at Rensselaer Polytechnic Institute.

Evelyn Hu, co-chair of the panel and a physicist at the University of California, Santa Barbara’s Center for Quantized Electronic Structures, says that at the beginning of the study, “I assumed that real nanotechnology was what we [electronic experts] did. But that’s not true.” She says the panel found nanotechnology is already making a commercial impact in applications as diverse as sunscreen lotions, catalysts, and even nanoparticles to reinforce concrete.

Nanotechnology funding continues to heat up. Spending by NSF alone reached $65 million in 1997 and is expected to climb to $70 million this year, says Michael Roco, NSF’s program director. And, he says, U.S. industry is probably spending an equal amount on its own research.

The most exciting work is going on at the interface of disciplines, such as physics and biology, says Siegel. “It’s becoming clear that if you use building blocks in [nanometer-scaled] regions, new things happen.” The challenge, says Siegel, is “to go beyond the simple manipulation of nanostructure” and make commercial quantities of materials. Chemists and biologists are, for instance, developing self-assembling materials, including copolymers and carbon nanotubes, that could do the trick.

Still, not even nano boosters downplay the task. Single-electron devices, in particular, continue to be a growing research area for many industrial labs around the world, says Herb Goronkin, a research manager at Motorola and one of the report’s co-authors. He says, however, that it is still not clear whether such devices are feasible, but, he adds, “I’m hopeful.”

The uncertainty is not slowing the momentum of nanotechnology. “It’s exploding worldwide,” says Siegel.

And that could soon make it a very small world, indeed.

0 comments about this story. Start the discussion »

Tagged: Business

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me